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Outline

For material system (N1 based single
crystal superalloys)
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Develop constitutive equations
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Implement into computational program
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[terative scheme to optimize design



Introduction

x Objective: To develop constitutive models for materials
operating at high temperatures: modern single crystal
superalloys.

= The model development will lead to better predictive
capability of the response of single crystal turbine blades

= Better creep characteristics of single crystal superalloys
and better design will lead to enhanced efficiency of gas
turbines

= Approach can be used for other materials as well.



Introduction

|
i = Higher inlet temperature =» higher efficiency, low
fuel costs

m Last 3 decades — turbine airfoil temperature
capacity has increased on an average by 4 °F per
year

= Contribution to the increased temperature capacity

~ 40 % due to advanced materials (single crystal
superalloys)



Introduction

|
i = Single crystal superalloys have complex thermo-
mechanical response

= Modeling the response of such materials

= [t 1s expected that a constitutive model will

= optimize the efficiency in design of components w.r.t
preventing failure and preventing over design

= eliminate the need for performing specimen tests for all
component conditions (Huge savings in terms of cost and
time!)



A Typical Creep Curve
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Creep of Nickel Superalloys
| Relationship to Microstructure

1. Characteristics of creep

a. Single crystal has the longest creep life
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Factors Affecting Creep
|

a

2. Factors that affect the creep life

a. v’ volume and size

b. Misfit

c. Rafting

d. Orientation

e. Temperature and stress



Microstructure of Nickel Based Single
| Crystal Superalloy

nl

y’volume and size

Peak value: 70-80%
Size: 0.4-0.5u m

TEM photography of Nickel based
single crystal superalloy SC16 9



Microstructure of Nickel Based Single
| Crystal Superalloy
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0.2% to zero led to a 50x increase in

creep rupture life!)

v and y’ cell projections
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Directional Coarsening of y’

a

3. Rafting: directional coarsening of y’

Microstructure changes during creep

The y’ precipitates coarsen (Ostwald ripening) very slowly, because of the
low interfacial energy between the y and y’ 11



Anisotropic Creep

‘ Creep 1s highly anisotropic
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Development of Constitutive
Equations

Use the theory of multiple natural
configurations, as a crystal can exist stress free
in more than one configuration.

Develop a consistent thermodynamic setting,
utilizing the maximization of rate of dissipation
to obtain evolution equations for the natural
configurations.

Incorporate main features described: Anisotropy,
Temperature dependence and microstructural
effects, 1in an averaged manner.

13



| Multiple Natural Configurations

a

= A body can possess many natural configurations;

= Response is elastic from these configurations.
= Evolution of underlying natural configuration has to be prescribed.

By B, e

Evolution of the natural configuration G = FK‘IFKO 14
p



Natural configurations associated
with single crystals

s

= Anisotropy associated with underlying
crystal structure
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Model Development

s Second Law (Reduced Energy Dissipation
Equation)

T.L—pw—pné—q'g?dg = pOE=(>0

= After Simplification
T-L_pwzé/mech 20

= Need to prescribe constitutive equations for the:

= Stored Energy v
= Rate of Dissipation (

16



Model Development

a

= Stored Energy

v =y(F,.G)

= On Simplification, stress
1s obtained as

s Second Law reduces to

oy
T=2pF, F
pace

e

AD +7.W, LW s,

A=(FTFE")

sym

dt

r=(F TE")

skew
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Specific Forms for Stored Energy

|
‘ s Total stored energy is split:

v =y (F)+y(G)

= Elastic Part ¢, ¢, ¢, O 0 0
Chb C¢; C, 0 0 O

A 1 C Chb Cp C¢; 0 0 O
W =— Ee CEe 0 0 0 ¢4 O 0
0

P 0 0 0 0 cy
0 0 0 0 0 c,

Fourth order elasticity tensor for a FCC crystal
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Inelastic Stored Energy

Two main energy storage mechanisms (Mollica,
Srinivasa and Rajagopal (2001))

Energy stored in dislocation networks

Use a dislocation density a(s) that depends on the
inelastic strain path length, s

szqu : S:_([HDpde

a(s)=a, (1 + 4, (1 —e ))
Based on experimental observations:
= Dislocation density increases with inelastic deformation.

= [t reaches a saturation point.
19



Inelastic Stored Energy (contd)

Second storage mechanism is due to the presence of the second
hard y’ phase.

Dislocations face significant resistance to their motion.
In particular they can get pinned
Based on the work of Mollica et al. (2001)

—— 0
N— — -
Dislocation |
Networks Resistance due

to second phase

20



| Inelastic Stored Energy (contd)

dur 1
j p d‘t”zh(s)(Dp.Dp)ua.Dp,

azpwzie”(x‘s)N(x)dx N= D,
0 /D, D,

h(s) = P[% (a'+na)- 771/7] , Hardening

1

a=py,D,-n(D,.D,)a

 Generalized version of non-linear kinematic hardening rule

« Equation for Backstress falls out naturally from our choice of
inelastic stored energy !

* No ad hoc prescription of backstress !
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Structure of Rate of Dissipation

\

¢, =D,.KD,,
Need to prescribe the fourth order tensor K
Dissipation is due to two main reasons:

Movement of mobile dislocations
= K depends on the density of mobile dislocations
s According to Gilman (1969)
Mobile dislocations= a(s) e 2
Softening due to cavitation in the latter
stages of creep.

22



Rate of Energy Storage

A

T.L .
— IOW + é/mech
,0

W, = W, +W,
Total Work Done=Work Stored + Work Dissipated
= Each work term arises naturally because of
the thermodynamic framework used.

s No ad-hoc coefficients used.

= Instantaneous rate of energy storage, R
_Wd _ Ws

R=1 _
W, W

23



Constitutive Model

j = Maximization of Rate of Dissipation to determine
L, =D, +W,
= Note: Evolution of natural configuration depends on the
driving force

A=pl+A",

A" =a+KD, +h(s) -
(D,.D,)’

D :%tr(A—A*)

W =—r7

p772
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Results

|

» The 1nitial results that are presented are obtained
using MATLAB.

= Later we will discuss the development of UMAT
(User Defined Material Subroutine) and the use of
Abaqus to solve boundary value problems for
more complex geometries for bodies.

25



Results

N

The problem is solved (for loading along <001>,<111>
and <011>) assuming homogeneous deformations with a
semi-inverse approach

F = diag(¢, (1), 4, (1), 4 (1)

F, =diag(4,,4,,4;)

G — dlag(¢l (t) , ¢2 (t) : ¢3 (t)
Ao A

)

Governing differential equations are obtained using
equations for evolution of natural configurations
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Material Parameters

v, : Proportionality constant for inelastic free energy stored in dislocation networks
v, : Proportionality constant for inelastic free energy due to hardening caused by y' precipitates

n : Parameter which tells how strongly stored energy depends on deformation history
f3, : Dislocation multiplication factor

o, : Parameter which tell how fast dislocation density saturates

a,,(2, : Attrition coefficient, related to the fraction of dislocations which are mobile

a,,Q, : Parameter related to dissipation due to damage accumulation

k,,I', : Parameter which tell how the first mechanism of dissipation depends on driving force
K,,1, : Parameter which tell how the second mechanism of dissipation depends on driving force
B, A, : Proportionality constant for first dissipation mechanism

B, A, : Proportionality constant for second dissipation mechanism

 Model corroborated with <001> & <111> orientations

17 Material Parameters (far lesser than crystal plasticity
based models)
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Anisotropic Creep Results
| <001>, <011>, <111> directions

a

= Loading axis can be in an
arbitrary direction. . _

I jJ jJ 0 00
= Requires mapping j 170 00
quantities back and forth i ji 000
between the global and K™=
crystal coordinate system. 0 00 k 00
0 00 0Kk O
= Fourth order tensor K. 0 0000k
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Anisotropic Creep, 800°C, <001>, (CMSX-4)
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Figure 2: Strain vs. time for CMSX-4 for loading along the <001 orientation, § = 800 °C:

Comparison of the predictions of the model with experimental results of Schubert et al | [24].
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Anisotropic Creep, 800°C, <111>, (CMSX-4)
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Figure 3: Strain vs. time for CMSX-4 for loading along the < 111> orientation. # = 800 °C:
Comparison of the predictions of the model with experimental results of Schubert et al., [24].
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Anisotropic Creep, 800°C, <011>, (CMSX-4)
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Figure 4: Strain vs. time for CMSX-4 for loading along the < 011> onentation, # = 800 °C.

Predictions of the model !!



Anisotropic Creep, 950°C, <001>, (CMSX-4)
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Figure 5. Strain vs. time for CMSX-4 for loading along the < 001> orientation, # = 950 °C:
Comparison of the predictions of the model with experimental results of MacLachlan et al., [25].



Anisotropic Creep, 950°C, <111>, (CMSX-4)
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Figure 6: Strain vs. time for CMSX-4 for loading along the < 111> orentation, # = 950 °C:
Comparison of the predictions of the model with experimental results of MacLachlan et al | [25].



| Anisotropic Creep, 950°C, <011>, (CMSX-4)
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Figure 7: Strain vs. time for CMSX-4 for loading along the < 011> orientation, # = 950 °C:
Comparison of the predictions of the model with experimental results of MacLachlan et al., [25].

Model corroborated with <001> & <111> predicts <011>well !!  ,



Finite Element Implementation

h‘__

Large deformation
Coupled Non-linear Partial Differential Equations

Newton's Method to solve the non-linear problem at
each Iiteration.

Implicit Scheme to enable large time steps

Need to Specify the tangent stiffness matrix
= To0 ensure quadratic rate of convergence.

= Satisfy incremental objectivity (numerical solution will be
frame invariant).

Implemented using ABAQUS through the
development of a user defined subroutine UMAT.
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Computational Subroutines in Abaqus

i = The constitutive model has been implemented
in Abaqus/Standard through UMAT

ABAQUS

*Solves the equilibrium
equation at every time step
(quasi-static problem)

 Large deformation analysis

1s carried out

F(t), F(t+At)
F.(0, T(0),s(1),GO)

F (t+ At), T(t+At)
S(t+ At), G(t + At)

UMAT

*Evaluates various quantities at
time t+dt using their values at
time t.

*Uses an implicit scheme based

on backward difference
(backward Euler Method).

*Solves the resulting non-linear
equation using Newton-
Raphson method

36



Numerical Scheme in UMAT

1 = Numerical scheme based on first order backward
difference (1implicit scheme, unconditionally stable)

First Order Backward Difference

f =g ts—At\/( D, Dp) =0

f2 — At Dp _( At K)_l ( At __tr(t+At Al — t+Ataj

f t+At trat

= o — o — pszt D _H7t+At (t+AtS_tS)

0

0

f4 - t+Atlﬁ tlﬁ— hl(os) (t+AtS_ tS)_AttJrAta. tral Dp ~0

37



| Numerical Scheme in UMAT

A
j Need to find solution to F (X) = {0}
() ([ tAtg )

f, S

F=! 2?0 X=/ Dp&[J]:a_F
f3 trAt o OX
f4 t+At ~

Use Newton Raphson Scheme /K / Xn1 X,

XK= X —[IT'F(X"*), k—iteration number

Update of G ( Eterovic and Bathe (1990))
t+AtG — eXp(At t+At L p)tG
Update on F,

tAt F. = Lt | ( LHAL (S )‘1

38


http://en.wikipedia.org/wiki/Image:Newton_iteration.svg

Computational Subroutines in Abaqus

A

= Inelastic strain pathlength S , and tensor G are
stored as solution dependent variables (SDV)

= Initial conditions on solution dependent variables
(SDV) are imposed through User Routine SDVINI 1n
Abaqus/Standard

= Orientation of crystal lattice 1s imposed through User
Routine ORIENT 1n Abaqus/Standard

39



Validation of Abaqus UMAT

a

= The UMAT for our constitutive model has
been validated by comparing results for
cases with available experimental results

= Elaborate testing of the UMAT 1s done for a
variety of cases to validate 1ts efficacy

40



Comparision of Results, Strain (CMSX-4 , 750 °C, <001>,
| Svoboda & Lucas (1998))

a
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Comparision of Results, Strain (CMSX-4, 982 °C, <001>

| Henderson & Lindblom (1997),)

i
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Comparision of Results (CMSX-4, <001>, 1000 °C,

Svoboda & Lucas (1998),)

015 T ~ T T ~ T "~ T " T o
& & Abequz 1501MPa
L B Ataquz 700 MPa &
B @ & Experiment 150 MFa
B N Experiment 700 MPa
[ | ———  Matlabl 50 MPa
m ——  Iatlab 200 biPa
0.10

0.00

+ 0.00 1.00 200 3.00 400 500 600 [x10°]

Time (Sec)

43



Comparision of Results, Inelastic Stored Energy
(CMSX-4, <001>, 750 °C)

a
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Comparision of Results, Ws/Wp (CMSX-4, <001>, 750
| C)
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Comparison of Results

v

= The model has been implemented in
ABAQUS/STANDARD through User Defined
Routines (UMAT, SDVINI, ORIENT)

= Experimental results, results obtained in MATLAB and
results obtained in ABAQUS agree well

= First order implicit backward difference method
implemented in UMAT is stable although time steps
need to be controlled to achieve accurate results
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Inhomogeneous Deformation of a <001>
Oriented Creep Specimen

= UMAT is used to study inhomogeneous deformation of a
creep specimen

= 800 °C, <001> Oriented

= Boundary Conditions: Uniform tensile loading (200 MPa)
along the top surface

Bottom Plane 1s fixed in space

47



Typical Finite Element Mesh
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Inhomogeneous Deformation of a <001>
Oriented Creep Specimen

= Stresses after 1) initial elastic step
2) after creep for 4.6E6 Secs (~1280 hours)

(2)

5, Mises 5, Miges
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Inhomogeneous Deformation of a <001>
| Oriented Creep Specimen

j = Strain 1n various regions of stresses due to creep

[x107]
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{lm.||||||||||||.|.|.|.|!
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Homogeneous Deformation of
Turbine blade

A

= UMAT has been tested for Homogeneous deformation
of a turbine blade at 800 °C, <001> Oriented

= Boundary conditions: Uniform loading ( 800 MPa) on
top surface,

Bottom plane remain fixed in z direction (the direction
of blade axis),

One point on the bottom plane near the leading edge 1s
fixed in space
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Homogeneous Deformation of Turbine
| blade
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Homogeneous Deformation of Turbine
blade

a
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| Conclusion

i = Development of constitutive model for
creep has been successfully completed

= The model 1s successful 1n predicting creep
behavior for

= a range of temperatures pertinent to gas turbine
blade applications (750 °C - 1000 °C)

= arange of loads

» loading in different orientations (<001>, <111>
and <011>)
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| Conclusion

1 s The constitutive model has been

implemented in Abaqus/Standard through
UMAT

= The UMAT has been validated with
experimental results and results for the case
of a homogeneous deformation

= The UMAT 1s able to solve for complex
deformations

95



Future Work

|

= Pick desired properties

= Use computational results from Abaqus to
vary choice of material functions.

= Optimize choice of stored energy, rate of
entropy production to engineer specific
properties

56
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Comparision of Results, Backstress (CMSX-4, <001>, 750

OC’ )

a
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Comparision of Results, Backstress (CMSX-4, <001>, 982

OC’)

a

Alpha(3,3)
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Comparision of Results, Inelastic Stored Energy
| (CMSX-4, <001>, 982 °C)
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Comparision of Results, Ws/Wp (CMSX-4, <001>, 982
| °©)
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Comparision of Results, Backstress (CMSX-4,
| <001>, 1000 °C,)

a
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Comparision of Results, Inelastic Stored Energy
| (CMSX-4, <001>, 1000 °C)

a
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Comparision of Results, Ws/Wp (CMSX-4,
<001>, 1000 °C,))

Abadquz 150 WPa |
Abacqus 700 MPa
Idatlab 130 hdPa
biatlab 300 MdPa

[[[]

Ws/Wp
28
S s
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Comparision of Results, Backstress (CMSX-4,
| <001>, 1000 °C,)
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Comparision of Results, Inelastic Stored Energy
| (CMSX-4, <001>, 1000 °C)

a
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Comparision of Results, Ws/Wp (CMSX-4,
<001>, 1000 °C,))

Abadquz 150 WPa |
Abacqus 700 MPa
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biatlab 300 MdPa
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Ws/Wp
28
S s

67



Conclusion

a

» The model is within a thermodynamic setting and
takes 1into account the anisotropy associated with
single crystal and its evolution with inelastic strain

= The model takes into account the microstructure
of single crystal superalloys, motion of
dislocations and their interaction with secondary
precipitates
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Homogeneous Deformation of Turbine
blade

= UMAT has been tested for Homogeneous deformation
of a turbine blade at 800 °C, <001> Oriented

= Boundary conditions: Uniform loading ( 800 MPa) on
top surface,

Bottom plane remain fixed in z direction (the direction
of blade axis),

One point on the bottom plane near the leading edge 1s
fixed in space
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Typical Composition of Nickel Based
| Single Crystal Superalloys

a

Ni Cr Co Mo w Al Ti Ta Re Nb \Y Hf

First Generation

Rene N4 | 62.6 |9 8 2 6 3.7 |42 |4 0.5

CMSX-2 [ 66.6 | 8 46 |06 (79 [56 |09 |58

Second Generation

Rene N5 | 61.8 | 7 8 2 5 6.2 7 3 0.2
CMSX-4 | 618 |65 |9 06 |6 56 |1 6.5 3 0.1
Third Generation

Rene N6 | 574 (4.2 |125 |14 |6 575 |0 7.2 5.4 0 0 0.15

CMSX-10 [ 69.6 | 2 3 04 |5 5.7 102 |8 6 0.1 0.03




Homogeneous Deformation of Turbine
blade
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